
Laboratory exercise 1: Measurememts in physics

FER/Algebra

February 28, 2021

In this exercise, you will learn about uncertainties that are an unavoidable feature of all measurements
in physics and engineering. You will gain practice with some basic computational procedures that
lead to the best estimates of measured values, as well as to their uncertainties. Most of your work
will be of computational nature, but you will also have to carry out some real measurements at your
home. The last section on the method of least squares is intended only for curious students.

The report should be handed in on March 12 2021 (Friday).

1 The uncertainty of measurement

Probably the most important property of any measurement in physics and engineering is that the
value of a measured quantity can never be determined with absolute certainty. The result of a typical
measurement consists of two things:

• the best estimate of the value of the quantity being measured,

• and the estimate of the uncertainty of the measurement.

For example, a recently reported value of the Hubble constant (a quantity that has to do with the
rate of the expansion of the Universe) reads

H = (73.2 ± 1.3)
km/s

kpc
.

Here 73.2 (km/s)/kpc is the best estimate of H the researchers could obtain through the methods
that they used, while ±1.3 (km/s)/kpc is the estimate of the uncertainty of their measurement.
Another example is the mass of the famous Higgs boson (an elementary particle found at CERN in
2012 after decades of experimental search) which reads

mH = (125.10 ± 0.14) GeV/c2.

In both cases, regardless of all efforts that have been made by the researchers to measure these
quantities as accurately and as precisely as possible, the measurement uncertainty remains relatively
large and is always reported. When presenting a measured quantity the following rule is usually
obeyed:

• The measurement uncertainty is rounded up so that it contains only one or at most two
significant digits.1

• The estimated value of the measured quantity is rounded up to the exactly same decimal place
as the uncertainty has been rounded up.

1In case you are not familiar with the concept of significant digits in the decimal representation of a number you
may refer to Chapter 1, Section 5, of your textbook (Young & Freedman 2019).
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If the above rule is followed, we say that the result of a measurement is presented in the standard

form.

Example 1.1: Presenting a measurement in the standard form

Repeated measurements of the mass of a steel ball gave

m̄ = 4.08607 g

as the best estimate of the ball mass, while the uncertainty of this measurement was estimated
to

σm = 0.02732 g.

The result of this measurement presented in the standard form using two significant digits for
the uncertainty would read

m = (4.086 ± 0.027) g,

while with only one significant digit in the uncertainty it would read

m = (4.09 ± 0.03) g.

Note that the estimated value is always rounded at the same decimal place as the uncertainty
is rounded.

Exercise 1.1: Presenting measurements in the standard form

In the repository http://sail.zpf.fer.hr/labs/algebra2021/L1/, in the file
E-1-1-ddd.pdf, where ddd is your personal three-digit code that you were assigned at
the beginning of the course, you will find the best estimates and the uncertainties obtained in
five unrelated experiments. This file should be included in your report.

In this exercise you should:

• present each of the given results in the standard form (see Example 1.1) first rounding up
the uncertainty to two,

• and then to only significant digit.

You should pay special attention to proper rounding up of values and do not forget to include
the appropriate measurement unit.

2 Independent measurements of a quantity

The simplest measurement scenario is the one in which you rightfully assume that the quantity you
are measuring is constant, and you are in the position to repeat the measurement as many times
as you like. Such measurements are said to be independent measurements. Typically, independent
measurement will differ among themselves, the variations being due to the intrinsic variations of
the quantity being measured, due to imperfection of your equipment, or due to noise, mechanical
vibrations, electrical interference, or any other influence from the environment. Let y1, y2, . . . , yN ,
or as we usually write

yi, i = 1, . . . , N, (1)

be the N independent measurements of a quantity y. We will refer to (1) simply as the data. As
you may intuitively expect, the best estimate of the measured quantity value in this case is the

http://sail.zpf.fer.hr/labs/algebra2021/L1/
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arithmetic mean of the data,

ȳ =
1

N

N
∑

i=1

yi =
y1 + y2 + · · ·+ yN

N
. (2)

According to the statistical theory that we shall not go into, the uncertainty of this measurement
is given by the quantity that is known as the standard deviation of the mean and is given by the
formula

σȳ =

√

√

√

√

1

N(N − 1)

N
∑

i=1

(

yi − ȳ
)

2
(3)

The conclusion of your measurements is summarized and specified in the standard form as

y = ȳ + σȳ, (4)

taking proper care to round the numerical values as explained in the preceding section and not
forgetting to specify the appropriate measurement unit. The process of downsizing a large data set
like (1) into a compact and comprehendible conclusion like (4) is called data reduction.

Example 2.1: Reduction of independent measurements

A person stepped onto the body weight scale ten times and took note of individual scale readings.
The N = 10 independent measurements mi of his/her mass m in kilograms are:

74.3, 74.0, 73.8, 74.2, 74.1, 74.1, 73.7, 73.8, 74.1, 74.3.

Rather disappointed and confused with more than obvious variation among the scale readings,
the person decided to reduce the data and present the result in the standard form. The best
estimate of measured body mass is given by the mean of the independent measurements,

m̄ =
1

N

N
∑

i=1

mi =
740.4 kg

10
= 74.04 kg,

while the uncertainty of the measurement is given by the standard deviation of the mean,

σm̄ =

√

√

√

√

1

N(N − 1)

N
∑

i=1

(

mi − m̄
)

2
=

√

0.404 kg2

10× (10− 1)
= 0.0669992 kg.

The final result written in the standard form with only one significant digit in the uncertainty is

m = (74.04 ± 0.07) kg.

Exercise 2.1: Reduction of independent measurements

In the repository http://sail.zpf.fer.hr/labs/algebra2021/L1/, in the file
E-2-1-ddd.pdf, where ddd is your personal three-digit code, you will find a number of
values of a physical quantity that have been obtained in independent measurements, as well as
the related measurement unit. This file should be included in your report.

In this exercise you should:

• compute the best estimate of the measured quantity value (the mean),

http://sail.zpf.fer.hr/labs/algebra2021/L1/
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• compute the uncertainty of the measurement (standard deviation of the mean), and

• present the result in the standard form with one significant digit in the uncertainty.

Exercise 2.2: A do-it-yourself experiment involving independent measurements

You should think of a simple measurement that you can make yourself using any equipment
that is available to you and which you can repeat at least 10 times or more. You could consider
measuring one of the following:

• your or somebody else’s body mass using standard body weight scale (see Example 2.1),

• mass of some small object using the kitchen scale (typically range up to 4 kg),

• your body temperature using a standard medical thermometer,

• circumference of a long object with a regular cross section (leg of a table, some pipe, a
beer can) by wrapping a sheet of paper around it, putting marks with a pencil, unwrapping
the sheet, flattening it out, and measuring the distance between the marks,

• upload or download speed of your Internet link using some of the publicly available software
tools for whatever device you are using,

or come up with something more interesting of your own. You should describe your experi-
mental setup and provide a photograph if possible. You should obtain at least 10 independent
measurements, reduce them and present the final result in the standard form.

3 Measurements of a quantity depending on another quantity

In many experiments in physics and engineering, one is measuring a physical quantity that depends
on one or more other physical quantities that change in time and can also be measured, or that can
be set to the desired values. In this way the dependence of a physical quantity on other quantities
can be investigated.

For simplicity, here we will consider only the situation in which it is reasonable to expect that a
quantity y depends linearly on a quantity x. Such dependence can be expressed mathematically as

y(x) = ax+ b, (5)

where a and b are the unknown coefficients whose values are to be determined from the measure-
ments. We usually say that equation (5) defines the model for the dependence of y on x, and that
a and b are the model parameters. Let us assume that we measured N pairs of values of x and y,
which means that our data has the form

(xi, yi), i = 1, . . . , N. (6)

According to the statistical theory on which we shall not elaborate, using (5) as the model for our
data, the best estimates of values of the model parameters a and b are given by

a =
1

∆

(

N
∑

i

xiyi −
∑

i

xi
∑

i

yi

)

, b =
1

∆

(

∑

i

x2i
∑

i

yi −
∑

i

xi
∑

i

xiyi

)

, (7)

where

∆ = N
∑

i

x2i −

(

∑

i

xi

)2

. (8)
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The uncertainties of a and b are given by

σa = σy

√

N

∆
, σb = σy

√

1

∆

∑

i

x2i , (9)

where ∆ is given by (8) and

σy =

√

1

N − 2

∑

i

(

yi − (axi + b)
)

2
. (10)

Once the values of the parameters a and b and their uncertainties have been determined for some
data set, we usually say that we performed a measurement of a and b.

Example 3.1: Determination of the speed of an object

An object is moving along a straight horizontal rail and its distance d from one end of the rail
is being measured by a sonar in time instants separated by one second. The measurement data
is given in the following table:

ti/s 1 2 3 4 5 6 7 8 9 10

di/cm 31.9 39.1 45.7 53.2 60.9 67.6 71.4 80.1 88.5 94.6

The data can be shown graphically using the coordinates x = t/s (time in seconds) and y =
d/cm (position in centimetres). Blue bullets are the measurements.
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It is easy to see that our N = 10 data points roughly sit on a line. Therefore it is reasonable to
assume that the body is moving at a constant speed, and that the small deviations of the data
points may be due to the imperfection of the measurement procedure (sonar). We can therefore
assume the model

yi = axi + b,

where the parameter a is the speed in centimetres per second, and the parameter b can be
interpreted as the position where the body could have been at t = 0. In order to determine the
best estimates of the values of the parameters a and b we first compute the sums

∑

i

xi = 55,
∑

i

yi = 633,
∑

i

xiyi = 4053.2,
∑

i

x2i = 385,

then we use (8) to compute
∆ = 825,
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and finally we use (7) to obtain

a = 6.9297 and b = 25.1867.

The red line in the above graph was drawn using the above values of a and b.

Proceeding to the uncertainties of a and b, we first use (10) to compute

σy = 1.03031,

which is needed in (9) to obtain

σa = 0.113433 and σb = 0.703833.

Finally the speed of the body as determined from the measurements and the model is

v = (a± σa) cm/s = (6.9 ± 0.1) cm/s.

We may refer to this final result as the measured speed of the object.

Exercise 3.1: Determination of the speed of an object

In the repository http://sail.zpf.fer.hr/labs/algebra2021/L1/, in the file
E-3-1-ddd.pdf, where ddd is your personal three-digit code, you will find a data set
similar to the one that was considered in Example 3.1. This file should be included in your
report.

You should carry out yourself the procedure of determining the speed of the object using the
data from the file. In your report you should:

• plot the data,

• compute and document all the intermediate results (values of various sums, ∆, σy) that
are needed to compute a, b, and the uncertainties,

• explain shortly how you computed the values (did you use a pocket calculator, a spread-
sheet program on a computer, or some programming language, if so which?),

• provide unrounded values of a, b, σa and σb,

• present the final result for the speed of the body in the standard form using one significant
digit for the uncertainty, and

• provide a plot that contains both data and the model (line).

The plots can be drawn by hand or by a computer program of your choice.

4 Least squares method

You certainly noticed that the expressions (7) for best estimates of model parameters values and
especially expressions (9) for the uncertainties were presented to you as a “recipe”, i.e. without any
theoretical justification. The reason for this is that the statistical theory needed to derive these
expressions requires a thorough discussion of an intricate set of subtle assumptions that is outside of
the scope of the present physics course. However, there is one remarkably elegant concept known as

http://sail.zpf.fer.hr/labs/algebra2021/L1/
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the least squares method which allows you to obtain the best estimates of model parameter values
in the cases that we considered, as well as in many other situations.

Let us assume that the dataset consists of N measurements of quantities x and y that depend one
on another,

(xi, yi), i = 1, . . . , N, (11)

and that the model for the data can be expressed as

y(x; p, . . . , q), (12)

where p, . . . , q are the unknown model parameters.2 We seek to find the values of model parameters
that make the model fit the data as closely as possible. To this end we first introduce the quantity
δi known as the residual of the data point i as the deviation of yi from the value predicted by the
model,

δi = yi − y(xi; p, . . . , q), i = 1, . . . , N. (13)

and proceed to construct a quantity that gives us a measure of how well the model fits the whole
dataset. This quantity is constructed as the sum of squared residuals

S2(p, . . . , q) =

N
∑

i=1

δ2i =

N
∑

i=1

(

yi − y(xi, p, . . . , q)
)

2
, (14)

and is known as sum-of-squares for short. The least squares method is based on the assumption that
the model that fits the data the best is the one that makes the sum-of-squares the least. Technically,
this means that we must minimize S2 relative to the model parameters, which implies one equation
for each parameter,

∂

∂p
S2(p, . . . , q) = 0, . . .

∂

∂q
S2(p, . . . , q) = 0. (15)

Solving the above system of coupled equations for the model parameters p, . . . , q gives us the
expressions for best estimates of their values.

Example 4.1: Independent measurements via least squares

In the case of independent measurements of y we are not considering the dependence y on any
other quantity so the dataset is simply yi, i = 1, . . . , N , and the data model is y = c. The
residuals are therefore δi = yi − c, and the sum-of-squares is

S2 =
∑

i

δ2i =
∑

i

(yi − c)2 =
∑

i

(

y2i − 2cyi + c2
)

=
∑

i

y2i − 2c
∑

i

yi +Nc2.

The last expression is quadratic in c with a minimum at

c =
1

N

∑

i

yi,

which we recognize as the arithmetic mean of the data. We have shown that according to the
least squares method the mean of the independent measurements is the best estimate of the
value of measured quantity, exactly as we stated in Section 2, equation (2).

2We also tacitly make the following assumptions: (i) the uncertainties of the individual measurements of y relative
to the range covered by all measurements of y are considerably larger than the uncertainties of x relative to the
range covered by all measurements of x, and (ii) we assume that uncertainties of individual measurements of y are
approximately uniform.
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Example 4.2: Linear dependence of y on x via least squares

Assuming y is linear in x, the data model can be written as y = ax+ b, and the sum-of-squares
can be written out as

S2 =
∑

i

δ2i =
∑

i

(

yi − (axi + b)
)

2
=

∑

i

y2i − 2a
∑

i

xiyi + a2
∑

i

x2i + 2ab
∑

i

xi +Nb2 − 2b
∑

i

yi.

Following the least squares method, we require that the partial derivatives of S2 with respect
to parameters a and b vanish, which gives us

0 =
∂

∂a
S2 = −2

∑

i

xiyi + 2a
∑

i

x2i + 2b
∑

i

xi,

and

0 =
∂

∂b
S2 = 2a

∑

i

xi + 2Nb− 2
∑

i

yi.

If these two equations are solved for a and b, equations (7) of Section 3 are obtained as solutions.

In data reduction in physics one often needs more complex data models than those considered here.
For example, a very useful data model is the quadratic,

y(x) =
a

2
x2 + bx+ c,

which is linear in the parameters a, b, and c, and the expressions for best estimates of values of
these parameters can be obtained. However, these expressions are quite lengthy and will not be
given here.

Data models that are nonlinear in their parameters are more difficult to handle because the solutions
are not accessible in closed form, numerical optimization procedures must be used, and the solutions
are not guaranteed to be unique. However, there are some important special cases in which simple
mathematical transformations can convert a nonlinear problem into a linear one for which the least
squares method gives the result straightforwardly. We conclude this section with one such example.

Example 4.3: Exponential fall-off of y with x

If a laser beam is passing through some homogeneous absorbing medium, then the intensity of
the beam falls off (becomes weaker) according to the law

I(x) = I0 exp(−βx),

where paraeter I0 is the initial beam intensity, the parameter β describes the strength of the
absorption (larger β means more absorption per unit length), and x is the length of the path
that the beam has travelled through the medium. Let us assume that we measured (Ii, xi),
i = 1, . . . , N , and that we would like to determine the value of β. Writing out the sum-of-
squares using Ii and xi gives us

S2 =
∑

i

(Ii − I0 exp(−βx))2 ,

which would not, if we followed the least squares method, take us to a system of linear equations
in I0 and β that we can solve. If, on the other hand, we define a new variable y = ln I, then
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the model becomes linear and reads
y = y0 − βx,

where y0 = ln I0 is the new parameter, and the new sum-of-squares using y instead of I is

S′2 =
∑

i

(yi − (y0 − βxi))
2 .

It is easy to see that this is exactly the problem we considered in Example 4.2, the only difference
being in the notation.
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